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Abstract

Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present

paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids.

According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-

mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves

get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects.

These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are

significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass

diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being

diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process

of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat

conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small

amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by

using irreducible case of Cardano’s method with the help of DeMoivre’s theorem in order to obtain phase speeds,

attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case

of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and

zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various

thermoelastic diffusive waves are presented graphically.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

During the last three decades, non-classical theories of thermoelasticity so-called ‘Generalized thermo-
elasticity’ have been developed in order to remove the paradox of physically impossible phenomenon of
infinite velocity of thermal signals in the conventional coupled thermoelasticity. For example, Lord and
Shulman [1] formulated a generalized theory of thermoelasticity with one thermal relaxation time which
involves a hyperbolic equation of heat transportation by incorporating a flux-rate term into the Fourier’s law
of heat conduction. Green and Lindsay [2] developed a temperature-rate-dependent thermoelasticity that
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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includes two thermal relaxation times and does not violate the classical Fourier law of heat conduction, when
the body under consideration has a center of symmetry. The Lord and Shulman [1] theory of generalized
thermoelasticity was further extended to homogeneous anisotropic heat conducting materials; by Dhaliwal
and Sherief [3]. All these theories predict finite speed of heat propagation. Chanderashekhariah [4] referred to
this wave like thermal disturbance as ‘‘second sound’’. A survey article of various representative theories in the
range of generalized thermoelasticity was brought out by Hetnarski and Ignaczak [5].

The thermo diffusion in elastic solids is due to coupling of the fields of temperature, mass diffusion and that
of strain in addition to heat and mass exchange with environment. Nowacki [6–9] developed the theory of
thermoelastic diffusion by using coupled thermoelastic model. Dudziak and Kowalski [10] and Olesiak and
Pyryev [11], respectively, discussed the theory of thermo diffusion and coupled quasi-stationary problems of
thermal diffusion for an elastic cylinder. They studied the influence of cross effects arising from the coupling of
the fields of temperature, mass diffusion and strain due to which the thermal excitation results in additional
mass concentration and that generates additional fields of temperature.

The recent development of generalized theory of thermoelastic diffusion by Sherief et al. [12] allows the
finite speed of propagation of waves and it provides a chance to study wave propagation in such interesting
media. They derived governing equations for generalized thermo diffusion in elastic solids and also proved
variational principles and reciprocity theorems for these equations. The uniqueness of solution for these
equations under suitable conditions is also established. The propagation of plane harmonic waves in
generalized thermoelastic solids have been discussed by many authors [13–16].

Singh [17] investigated the reflection of P and SV waves from the free surface of elastic solids with
generalized thermodiffusion. According to Sherief et al. [12] diffusion can be defined as the random walk of an
ensemble of particles from regions of high concentration to that of low concentration. Nowadays there is a
great deal of interest in the study of this phenomenon due to its applications in geophysics and electronic
industry. In integrated circuit fabrication diffusion is used to introduce ‘‘dopants’’ in controlled amounts into
the semiconductor substance. In particular, diffusion is used to form the base and emitter in bipolar
transistors, integrated resistors, and the source/drain regions in MOS transistors and dope poly-silicon gates in
MOS transistors. In most of the applications, the concentration is calculated using what is known as Fick’s
law. This is a simple law which does not take into consideration the mutual interaction between the introduced
substance and the medium into which it is introduced or the effect of the temperature on this interaction.

Keeping in view, the above applications of thermodiffusive possesses, the propagation of generalized
thermoelastic diffusive waves has been investigated in this paper. The phase velocities and attenuation
coefficients of various possible modes of wave propagation have been computed by using irreducible case of
Cardano’s method with the help of DeMoivre’s theorem from the secular equations. The propagation of
waves in non-heat conducting materials has also been discussed. The analytical results have also been
computed numerically and represented graphically for illustration of various physical phenomenon inherited
by such solids.

2. Basic equations

The basic governing equations for linear thermodiffusive interactions in homogeneous isotropic elastic
solids are [12],
i.
 Strain–displacement relations

eij ¼
1

2
ðui;j þ uj;iÞ; i; j ¼ 1; 2; 3. (1)
ii.
 Stress–strain–temperature–concentration relations for such materials:

sij ¼ lekkdij þ 2meij � b1Tdij � b2Cdij ,

rT0S ¼ rCeT þ b1T0ekk þ aT0C,

P ¼ �b2ekk þ bC � aT ; i; j; k ¼ 1; 2; 3. ð2Þ
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These are also known as constitutive relations.

iii.
 Equations of motion

m ui;jj þ ðlþ mÞuj;ij � b1T ;i � b2C ;i þ rF i ¼ r €ui; i; j ¼ 1; 2; 3 (3)
iv.
 Equation of heat conduction

KT ;ii � rCeð _T þ t0 €TÞ ¼ b1T0ð_eþ t0 €eÞ þ aT0ð _C þ t0 €CÞ; i ¼ 1; 2; 3. (4)
v.
 Equation of mass diffusion

C;ii �
1

Db
ð _C þ t1 €CÞ ¼

b2
b

e;ii þ
a

b
T ;ii; i;¼ 1; 2; 3, (5)

where b1 ¼ ð3lþ 2mÞaT , b2 ¼ ð3lþ 2mÞaC , e, dilatation; l and m are Lames parameters; aT, coefficients
of linear thermal expansion and aC, coefficients of linear diffusion expansion; r, density; Ce, specific heat;
a, thermodiffusive constants; b, diffusive constant; K, thermal conductivity; P, chemical potential; C,
concentration; T, temperature change; t0, t1, thermal relaxation time parameters and ui, displacement
components. We assume that the material parameters satisfy the inequalities

T040; t040; t140; m40; l40; K40; D40; Ce40; r40. (6)
3. Formulation and solution of the problem

We consider a homogeneous isotropic thermodiffusive elastic solid at uniform temperature T0 and initial
concentration C0, in the undisturbed state. The basic field equations (3)–(5) of linear generalized
thermodiffusion, in the absence of body forces and heat sources, become

mr2~uþ ðlþ mÞrr �~u� b1rT � b2rC ¼ r€~u, (7)

Kr2T � rCeð _T þ t0 €TÞ ¼ b1T0r � ð
_~uþ t0 €~uÞ þ aT0ð _C þ t0 €CÞ, (8)

r2C �
1

Db
ð _C þ t1 €CÞ ¼

b2
b
r2ðr �~uÞ þ

a

b
r2T , (9)

where ~uðx1; x2;x3; tÞ ¼ ðu1; u2; u3Þ and Tðx1;x2;x3; tÞ are, respectively, the displacement vector and temperature
change. We define the quantities

x0i ¼
o�xi

cL

; t0 ¼ o�t; u0i ¼
ro�cLui

b1T0
; T 0 ¼

T

T0
; C0 ¼

C

C0
; t00 ¼ o�t0; t01 ¼ o�t1,

o� ¼
Ceðlþ 2mÞ

K
; �T ¼

T0b
2
1

rCeðlþ 2mÞ
,

d2 ¼
c2S
c2L
; b̄ ¼

b2C0

b1T0
; b̄ ¼

aT0

bC0
; ā ¼

aC0

rCe

, ð10Þ

$b ¼
c2L

o�Db
; �c ¼

b1b2T0

C0bðlþ 2mÞ
; c0 ¼

c

cL

; k0 ¼
kcL

o�
; o0 ¼

o
o�
; c2L ¼

ðlþ 2mÞ
r

; c2S ¼
m
r:

Upon introducing quantities (10) in Eqs. (7)–(9), we obtain

d2r2~uþ ð1� d2Þrr �~u�rT � b̄rC ¼ €~u, (11)

r2T � ð _T þ t0 €TÞ � �Tr �
_~uþ t0 €~u
� �

þ āð _C þ t0 €CÞ ¼ 0, (12)
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r2C �$bð _C þ t1 €CÞ � �cr
2ðr �~uÞ � b̄r2T ¼ 0. (13)

Here dashes have been omitted for convenience. A plane displacement wave of harmonic time dependence
propagating with non-dimensional phase velocity c in a direction defined by the propagation vector ~p is
represented as

~u ¼ A1
~d exp ikð~r �~p� ctÞ

� �
, (14)

where k, ~r and ~d are, respectively, the wave number, the position vector, and a unit vector defining the
direction of motion. The deformation affects the thermal state and concentration of the medium. Therefore, a
displacement wave is accompanied by thermal and mass diffusion fields, which are scalar quantities, and may
be taken of the similar form [16] as

T ¼ A2 exp ikð~r �~p� ctÞ
� �

, (15.1)

C ¼ A3 exp ikð~r �~p� ctÞ
� �

. (15.2)

Substitution of solutions (14) to (15) in Eqs. (11)–(13) leads to

ðd2 � c2ÞA1
~d þ ð1� d2Þ ð~p � ~dÞ~pA1 þ ik�1~pA2 þ ik�1~b~pA3 ¼ 0, (16)

ik�Tt0c2ð~p � ~dÞA1 � ð1� t0c2ÞA2 þ āt0c2A3 ¼ 0, (17)

ik�cð~p � ~dÞA1 þ
~bA2 � ð1� ōbt1c2ÞA3 ¼ 0, (18)

where t0 ¼ t0 þ io�1, t1 ¼ t1 þ io�1.
The system of equations (16)–(18) has a non-trivial solution if the determinant of the coefficients of A1, A2

and A3 vanishes. This leads to the secular equation

ðd2 � c2Þ~d þ ð1� d2 þ �aÞ ð~p � ~dÞ~p�
�a þ ð�T � �aÞt0c2
� �

1�$bt1c2 þ b̄b̄
� �

ð1� t0c2Þ ð1� ōbt1c2Þ � āb̄t0c2
ðp � ~dÞ~p ¼ 0, (19)

where �a ¼ �c=b̄. Eq. (19) is a vector equation consisting of a set of three equations which must be solved for
unknown vector ~d. We adopt the approach of Ahmad and Khan [16] to solve Eq. (19). If we take ~d ¼
ðd1; d2; d3Þ and ~p ¼ ðp1; p2; p3Þ, Eq. (19) is equivalent to the following system of equations:

ðaijÞdj ¼ 0, (20)

where the matrix (aij) is given by

ðaijÞ ¼

d2 � c2 þMp2
1 Mp1p2 Mp1p3

Mp1p2 d2 � c2 þMp2
2 Mp2p3

Mp1p3 Mp2p3 d2 � c2 þMp2
3

2
64

3
75, (21)

M ¼ 1� d2 � �a � T ; T ¼
�a þ ð�T � �aÞt0c2
� �

1� t1$bc2 þ b̄b̄
� �

½1� t0c2�½1�$bt1c2� � āb̄t0c2
. (22)

For a non-trivial solution of Eq. (20) the determinant of matrix (aij) must be zero. This gives us a characteristic
equation which can be solved for c2. In the absence of mass concentration ða ¼ 0 ¼ b2Þ and thermo-
mechanical coupling ð�T ¼ 0Þ, the matrix (21) is symmetric and the three eigenvalues are real, corresponding to
three elastic waves propagating in any fixed direction. However, in the presence of thermal coupling ð�Ta0Þ
and absence of mass concentration ða ¼ 0 ¼ b2Þ, the matrix (aij) is neither symmetric nor Hermitian. The
characteristic equation in this case, after rationalization and simplification, is of fourth degree in c2 having in
general, complex roots. Because the thermal coupling is usually small, three of the roots will have small
imaginary parts and have real parts approximately equal to the corresponding eigenvalues of (aij) with �T ¼ 0.
These three roots give three attenuated elastic waves and the fourth root corresponds to the thermal wave
which has a large attenuation coefficient. When both mass concentration and thermoelastic coupling are
present ð�Ta0; aa0; b2a0Þ, the matrix (aij) is not Hermitian (symmetric) again. The characteristic equation
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jaijj ¼ 0, after rationalization and simplification, is of fifth degree in c2 having, in general, complex roots. Here
four of the five roots will be associated with attenuated elastic and thermal waves. The fifth root will be
associated to the mass diffusion wave (MD-mode) having large attenuation coefficient.

4. Longitudinal and transverse waves

In this section we consider two situations of polarization vector ~d and wave normal ~p namely, either
~d ¼ �~p, or ~p � ~d ¼ 0. The former corresponds to longitudinal motion and latter to transverse one in the
generalized thermoelastic solid with voids.

4.1. Transverse waves

If ~da�~p, then ~p � ~d ¼ 0 and Eq. (19) implies that

c ¼ �d. (23)

This Eq. (23) defines transverse wave which do not interact with temperature and mass diffusion fields and
travels with non-dimensional velocity d without dispersion, attenuation and dissipation.

4.2. Longitudinal waves

If ~d ¼ �~p then ~p � ~da0 and Eq. (19) in this case leads to

ð1þ �a � c2Þ �
�a þ t0c2ð�T � �aÞ
� �

1þ b̄b̄�$bt1c2
� �

ð1� t0c2Þð1� t1$bc2Þ � āb̄t0c2
¼ 0. (24)

This complicated equation (24) shows that the phase velocity depends on o or k, meaning that thermoelastic
diffusive waves are dispersive. Because the solution of Eq. (24) for c is generally complex valued, so
generalized thermoelastic diffusive waves also suffer attenuation. In low- and high-frequency regimes,
characterized by o51 and ob1, the wave like modes are determined by isentropic (constant entropy) and
isothermal material parameters, respectively. A motivating argument runs as follow:

Consider the transport of energy over a distance d in the direction defined by ~p ¼ ð1; 0; 0Þ. Representative
times for this process are tm ¼ dððlþ 2mÞ=rÞ�1=2, in case the energy is mechanical and transported through a
displacement wave, and tT ¼ d2

ðK=ðrCejtn0jÞÞ
�1, tn0 ¼ 1� iot0 when the energy is thermal and the

operational mechanism is heat conduction. In case the operative mechanism is mass diffusion, the
representative time tM ¼ d2

ðDb=jtn1jÞ
�1, tn1 ¼ 1� iot1. The frequency of the wave is o ¼ t�1m , hence

jtm=tT j ¼ o½1� ðt20o
2=2Þ þ oðt40Þ�. We deduce that tm5tT when o51, indicating that at low frequencies

mechanical energy transfer is more effective than thermal conduction and conditions locally are therefore,
nearly isentropic. Whereas, at the opposite extreme, ob1, thermal energy transfer is more predominant
process, and the prevailing conditions are nearly isothermal. Thus at the low frequency limits, the wavelike
modes are identifiable with the small amplitude waves in an elastic material that does not conduct heat and
may be regarded as inherent in the classical elastodynamics derived strictly from mechanical principles.
Similarly we have jtm=tM j ¼ o 1� t21o

2=2þ oðt41Þ
� �

. We again deduce that tm5tM at low frequency o51 and
mechanical energy transfer is more effective than mass diffusion, while at high frequency ob1 mass diffusion
is more predominant process.

We now inspect the low and high-frequency behavior of waves. Eq. (24) can also be rewritten as

1þ �a � c2 �
ðiþ t0oÞc2ð�T � �aÞ þ �ao
� �

ð1þ b̄b̄Þo�$bc2ðt1oþ iÞ
� �

o� ðt0oþ iÞc2½ � o�$bðt1oþ iÞc2½ � � āb̄oðt0oþ iÞc2
¼ 0. (25)

At low frequency ðo! 0Þ, the secular equation (25) provides us

c ¼ 0; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �T

p
. (26)

The modes associated with the first two values of c correspond to thermodiffusive wave (TD-mode) and mass
diffusion wave (MD-mode) and the third value of c is associated with elastodiffusive (ED) wave. Obviously,
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there is no damping in either of these modes in this limiting case. Thus the phase velocity of elastic (ED) wave
is slightly increased due to thermomechanical coupling effects at adiabatic conditions in this limiting case as
compared to its value at isothermal conditions in elastokinetics.

At high frequencyðo! 0Þ, the secular equation can be written from Eq. (24) in a straight forward manner
by just replacing t0 and t1 with t0 and t1, respectively. We get

ð1þ �a � c2Þ �
�a þ ð�T � �aÞt0c

2
� �

1þ b̄b̄�$bt1c2
� �

ð1� t0c2Þð1� t1$bc2Þ � āb̄t0c2
¼ 0. (27)

This reduced frequency equation (27) provides us three real values of c2 for non-zero t0 and t1 which
correspond to three modes of wave propagation namely, thermodiffusive wave (TD-mode), mass diffusion
(MD-mode) wave and elastodiffusive (ED) wave. Clearly all the waves are influenced and affected by thermal
relaxation and mass diffusion effects. In the absence of thermal relaxation time ðt0 ¼ 0 ¼ t1Þ, the secular
equation (27) leads to

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �cb̄

q
(28.1)

for longitudinal elastic wave and other two modes have infinite speeds of propagation being diffusive in
character. Clearly, the velocity of elastic wave is influenced and gets reduced due to mass concentration in the
material.

In the absence of mass concentration ða ¼ 0 ¼ b2 ) �c; �a ¼ 0Þ, Eq. (27) provides us

c ¼
�1ffiffiffiffiffiffiffiffiffiffi
t1$b

p ; c ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �T þ ð1=t0Þ
	 


�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �T þ ð1=t0Þ
	 
2

� ð4=t0Þ

q
2

vuut
. (28.2)

Further in the absence of thermo mechanical coupling ð�T ¼ 0Þ, Eq. (28.2) leads to

c ¼
�1ffiffiffiffiffiffiffiffiffiffi
t1$b

p ; c ¼ �1; c ¼
�1ffiffiffiffi

t0
p . (28.3)

For t0 ¼ 0 ¼ t1, Eq. (28.3) provides us c ¼ 1;1;1, which implies that in this limiting case the longitudinal

elastic wave travels with dimensional velocity equal to isothermal value cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
as in elastokinetics

and the other two waves have infinite velocity of propagation being diffusive in character.
In the general case, the secular equation (24), after lengthy but straight forward algebraic reduction and

manipulation, can be rewritten as

P
3

i¼1
ðc2 � a2

i Þ ¼ 0, (29)

where a2
i ; i ¼ 1; 2; 3 are the roots of the complex cubic equation

x3 � Lx2 þMx�N ¼ 0. (30)

Here

L ¼ t0ð1þ āb̄Þ þ$bt1 1þ t0ð1þ �T Þ½ �
� �

=$bt1t0, (31.1)

M ¼ 1þ t1$b þ t0 ð1þ āb̄Þð1þ �aÞ þ ð1þ b̄b̄Þð�t � �aÞ
� �� ��

t0t1$b, (31.2)

N ¼ ð1� �cb̄Þ
�
t0t1$b. (31.3)

Eq. (30) is a cubic equation with complex coefficients and there is no general arithmetic or algebraic method
of finding the exact value of the cube roots of imaginary quantities. Therefore, this equation will be solved by
using irreducible case of Cardan’s method with the help of DeMoivre’s theorem. Thus the complex roots
a2

j ¼ xj ; j ¼ 1; 2; 3 become known and consequently we have

cj ¼ �aj ; j ¼ 1; 2; 3. (32)
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We define

c�1 ¼ V�1 þ io�1Q; k ¼ Rþ iQ; R ¼
o
V
. (33)

Here V and Q are real, the exponent in the plane wave solutions (14)–(15) becomes
�Qð~r �~pÞ � ioðV�1~r �~p� tÞ. This shows that V is the propagation speed and Q is the attenuation coefficient
of the waves. Upon using representation (33) in Eq. (32), we obtain

Vj ¼
1

ReðajÞ
; Qj ¼ o ImðajÞ; j ¼ 1; 2; 3. (34)

In the absence of mass concentration ða ¼ 0 ¼ b2 ) �c; �a ! 0Þ, Eq. (29) provides us

c ¼
�1ffiffiffiffiffiffiffiffiffiffi
t1$b
p ; c ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �T þ ð1=t0Þ
	 


�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �T þ ð1=t0Þ
	 
2

� ð4=t0Þ
q

2

vuut
. (35.1)

Further in the absence of thermo mechanical coupling ð�T ¼ 0Þ, Eq. (35.1) leads to

c ¼
�1ffiffiffiffiffiffiffiffiffiffi
t1$b
p ; c ¼ �1; c ¼

�1ffiffiffiffiffi
t0
p . (35.2)

Eq. (35.1) for o! 0 leads to c ¼ 0; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �T

p
which agrees with Eq. (27).

Upon using the representation (33) and t0; t151, Eq. (35.2) provides us

V1 ¼ 1; V2 ¼
sec yffiffiffiffi

t0
p ; V3 ¼

sec yffiffiffiffiffiffiffiffiffiffi
t1$b

p ; Q1 ¼ 0:0; Q2 ¼ o
ffiffiffiffi
t0
p

sin y; Q3 ¼ o
ffiffiffiffiffiffiffiffiffiffi
t1$b

p
sinf,

where

y ¼
tan�1ð1=t0oÞ

2
; f ¼

tan�1ð1=t1oÞ
2

.

These relations agree with the consequent results of Eq. (28.3) for t0 ¼ 0 ¼ t1.
The solution of limiting secular equation (27) at high frequency limits can also be obtained in a similar

manner and the corresponding phase velocities and attenuation coefficient can be derived and calculated from
Eq. (34). The results in the context of conventional coupled thermoelasticity can be obtained from the above
analysis by setting t0 ¼ 0 ¼ t1. The values of phase velocity and attenuation coefficients in dimensional form
can be obtained with the straight forward use of quantities (10).
5. Non-heat conducting solids

If the solids is not capable of conducting heat ðK ! 0Þ, then Eq. (8) implies that

T ¼ �
b1T0

rCe

r �~u�
aT0

rCe

C. (36)

Upon using Eq. (36) in Eqs. (7) and (9), we get

d2r2~uþ ð1þ �T � d2Þrr �~u�
a�T

b1
rc ¼

1

c2
~u
��

, (37)

r2C �
1

Dbð1þ �bÞ
ð _C þ t1 €CÞ ¼

b1
a
ðānb̄

n
� �bÞr

2r �~u, (38)

where ān ¼ a=b; �b ¼ a2T0=rCeb; b̄
n
¼ b2=b1:
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Eqs. (37) and (38) with the help of Eqs. (10), (14) and (15) leads to

ðd2 � c2Þ~d þ ð1þ �T � d2Þ ð~p � ~dÞ~p�
�T ðā

nb̄
n
� �bÞ

1� ðc2Lt1c2Þ=ðDbð1þ �bÞÞ
~pð~p � ~dÞ ¼ 0, (39)

where t1 ¼ t1 þ io�1 and c is the non-dimensional phase velocity.
The vector equation (39) consists of a set of three equations, which must be solved for unknown vector

~d ¼ ðd1; d2; d3Þ for given ~p ¼ ðp1; p2; p3Þ. This system can be written in the matrix for as below:

ðbijÞdj ¼ 0, (40)

where the matrix (bij) is given by

ðbijÞ ¼

d2 � c2 þ Sp2
1 Sp1p2 Sp1p3

Sp1p2 d2 � c2 þ Sp2
2 Sp2p3

Sp1p3 Sp2p3 d2 � c2 þ Sp2
3

2
64

3
75, (41)

S ¼ 1� d2 þ �T � Tn; Tn ¼
�T ðā

nb̄
n
� �bÞ

1� ðc2Lt1c2Þ=Dbð1þ �bÞ
. (42)

The system of equations (40) will have a non-trivial solution if the determinant of the matrix (bij) is zero. This
gives us a characteristic equation that can be solved for c2. In the absence of mass concentration ða ¼ 0 ¼ b2Þ,
the matrix (41) is Hermitian (symmetric) giving three real eigenvalues corresponding to three elastic waves
propagating with adiabatic speeds. However, in the presence of mass concentration ðaa0; b2a0Þ the matrix
(bij) is not Hermitian and the characteristic equation in this case, after rationalization and simplification, is of
fourth degree in c2 having in general, complex roots. Here three of the four roots correspond to three elastic
waves with small attenuation and the fourth one to the mass concentration wave (MD-mode) with large
attenuation coefficient.

5.1. Transverse waves

In this case ~p � ~d ¼ 0 and hence Eq. (39) implies that d2 � c2 ¼ 0 so that c ¼ �d. This defines transverse
wave at adiabatic conditions, which do not interact with temperature and mass concentration fields and hence
travels with non-dimensional velocity d without dispersion, attenuation and dissipation.

5.2. Longitudinal waves

For longitudinal waves, we have ~p ¼ �~d; ~p � ~da0 and hence Eq. (39) implies that

ð1þ �T � c2Þ 1�
c2Lt1c

2

Dbð1þ �bÞ

� 

� �T ðā

nb̄
n
� �bÞ ¼ 0. (43)

In the absence of mass diffusion ða ¼ 0Þ, the above equation provides us

c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �T

p
; �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Db=t1

p
Þ=cL; t1 ¼ t1 þ io�1. (44)

The first value of phase velocity c corresponds to elastic modes at adiabatic conditions and the other to that of
mass diffusion waves. Evidently second value of c being complex shows that mass diffusion modes are
attenuated in space and first value is same as obtained in the low frequency limit ðo! 0Þ discussed in the
previous section. Eq. (44) implies that

c ¼ �li; i ¼ 1; 2, (45)

where li; i¼1;2 are given

l21 þ l22 ¼ ð1þ �T Þ þ
Dbð1þ �bÞ

t1c2L
; l21l

2
2 ¼ 1þ �T ð1� ānb̄

n
þ �bÞ

n o
Dbð1þ �bÞ=t1c2L. (46)
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Fig. 1. (a) Variation of phase velocity of elastodiffusive (ED) waves w.r.t. frequency for different relaxation times. (b) Variation of

attenuation coefficient of elastodiffusive (ED) waves w.r.t. frequency for different relaxation times. (c) Variation of specific loss factor of

elastodiffusive (ED) waves w.r.t. frequency for different relaxation times.
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Upon using representation (33), we obtain

V i ¼ 1=Re
1

li

� �
; Qi ¼ o Im

1

li

� �
. (47)

This determines the phase velocity and attenuation coefficients of possible modes of wave propagation one
corresponds to elastic and other to mass diffusion. The results in the absence of mass diffusion relaxation
effects can be obtained from the above analysis by setting t1 ¼ 0 in the relevant relations. The dimensional
values of phase velocity and attenuation coefficients can be obtained with the help of quantities (10).

6. Specific loss

The specific loss is the energy dissipated in taking a specimen through a stress cycle, DW, to the elastic energy
stored in the specimen when the strain is a maximum, W. The specific loss is the most direct method of defining
internal friction for a material, Puri and Cowin [18]. For a sinusoidal plane wave of small amplitude, Kolsky
[19, p. 106] shows that the specific loss DW/W equals 4p times the absolute value of the imaginary part of k to the
real part of k, i.e. DW=W ¼ 4pjImðkÞ=ReðkÞj where k is a complex number such that Im(k)40. Here

DW

W
¼ 4p

ImðkÞ

ReðkÞ

����
���� ¼ 4p

V iQi

o

����
����. (48)

7. Numerical results and discussion

In order to illustrate and verify the analytical results obtained in the previous sections we present some
numerical simulation results. The materials chosen for this purpose are copper (solvent) and zinc (solute),
whose physical data is given below.

l ¼ 8:2� 1010 Nm�2; m ¼ 4:2� 1010 Nm�2; r ¼ 8:950� 103 kgm�3; T0 ¼ 300K

Ce ¼ 0:8298� 10�3 J=kg=K; K ¼ 1:13� 102 W=m=s=K;

aT ¼ 1:0� 10�8 K�1; D ¼ 0:34� 10�4 ms�1ðzn2cuÞ; 2T ¼ 0:00265,

b1 ¼ 3300Nm�2 K�1; b2 ¼ 330Nm�5 K�1; o� ¼ 1:11� 1011 s�1,

ac ¼ 1:0� 10�9 K�1; a ¼ 0:1521� 102 ms�1; b ¼ 0:02� 10�4 ms�1,

The secular equation (26) is solved by Cardano’s algorithm by taking t0 ¼ 0:0; 0:05; 0:1 and t1 ¼ 0:0; 0:04; 0:09
for various values of non-dimensional frequency oðo ¼ 0:0; 0:001; 0:003; 0:01; 0:03; 0:1; 0:3; 1:0; 3:0; 10:;
30:; 100:; 300:; 1000:; 3000:Þ on PENTIUM-IV IBM processor by developing a FORTRAN code in order to
illustrate the analytical development numerically. The values of thermal relaxation time t0 have been estimated
from Eq. (2.5) of Ref. [4] and those for t1 are taken proportionally. The computed values of phase velocities
(Vi), attenuation coefficients (Qi) and specific loss (Si) of three possible modes of wave propagation namely;
elastodiffusive (ED) wave, thermodiffusive (TD) wave, and mass diffusion (MD) wave, are plotted in Figs. 1,
2, and 3 respectively, with frequency on log-linear scales.

From Fig. 1a, it is noticed that the phase velocity of elastodiffusive (ED) wave remains close to its isentropic
value and varies linearly in the frequency range 0pop0:03 for all the considered values of thermal relaxation
time. This quantity varies monotonically with increasing frequency in 0:03pop1:0 for t0 ¼ 0:0; 0:05; and 0:1.
The phase velocity of ED-wave observes sharp increase in the range 1:0pop10 for all the considered values
of the relaxation time. This approach to an indefinitely large value in case of t0 ¼ 0:0 but tends to finite stable
values after observing slight decrease for t0 ¼ 0:05 and at oX10. However, the magnitude of phase velocity is
observed to fall significantly with increasing values of the thermal relaxation time t0 in the high-frequency
Fig: 2. (a) Variation of phase velocity of thermodiffusive (TD) waves w.r.t. frequency for different relaxation times. (b) Variation of

attenuation coefficient of thermodiffusive (TD) waves w.r.t. frequency for different relaxation times. (c) Variation of specific loss factor of

thermodiffusive (TD) waves w.r.t. frequency for different relaxation times.
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range oX10. It is also noticed from the phase velocity profiles that the mean of energy transportation is
mechanical in the low-frequency region and predominantly diffusion at high-frequency one.

The variations of phase velocity of mass diffusion (MD) wave are presented in Fig. 2a with increasing
frequency for different values of thermal relaxation time. The trend of variations of this quantity are similar to
those of Fig. 1a except that the magnitude is almost double in the instant case and the profiles pertaining to
t0 ¼ 0:0; 0:05; and 0:1 have some common points in the frequency range of 1:0pop30: Moreover, the sharp
rise in the magnitude of phase velocity in case of t0 ¼ 0:0 occurs in the frequency range oX10:0 here instead of
oX1:0. The Fig. 3a represents phase velocity profiles of thermodiffusive (TD) waves. The trends of variation
of this quantity in this case are almost similar except that the magnitude is 1.5 times more than that in Fig. 1a.
The phase velocity is finite, though quite large, with increasing trend for oX1:0 even in case of t0 ¼ 0:05 and
0:1. Figs. 1a, 2a and 3a reveal that the phase velocities of all the modes namely ED, MD and TD are very close
to their isentropic values in the low-frequency regime oX1:0, because the energy transportation is
predominantly took place through a mechanical/displacement waves in this range of frequency. At high
frequency, the phase velocities of these waves shoots up in order to have large values because the mean of
energy transportation for o41 is predominantly either thermal diffusion or mass diffusion or combination of
both in this case.

The attenuation coefficient profiles of ED, MD and TD waves are presented in Figs. 1b, 2b and 3b
respectively, on log-linear scales with respect to frequency for different values of relaxation time. From Fig.
1b, it is observed that attenuation coefficient (Q1) is zero in the frequency range 0:0pop0:001. It sharply
increases in the range 0:001pop0:03, decreases for 0:03pop0:01 and remains constant in the region
0:01pop3:0 for the considered values of thermal relaxation time t0 ¼ 0:0; 0:05; and 0:1. While the variations
of attenuation coefficient (Q1) in case of coupled thermoelasticity (t0 ¼ 0:0) remains constant and vary linearly
for all oX0:01, it is quite dispersive in generalized thermoelasticity ðt0 ¼ 0:05; 0:1Þ in the frequency range
3:0pop100 before it becomes stable and steady for oX100. The attenuation coefficient (Q2) of MD-wave is
presented in Fig. 2b. It follows Gaussian distribution about o ¼ 0:001 in the frequency range 0oop0:03 for
all the considered values of thermal relaxation time. This quantity increases slowly in the frequency range
0:03oop0:01 to becomes stable and it varies approximately in linear manner afterwards for oX0:01 in the
context of coupled thermoelasticity ðt0 ¼ 0:0Þ. The attenuation coefficient (Q2) of mass diffusion (MD) wave
increases steadily in the frequency range 0:03pop0:01 and sharply afterwards for oX0:01 in case of
generalized thermoelasticity ðt0 ¼ 0:05; 0:1Þ. This quantity also has quite large magnitude in this range of
frequency in the context of generalized thermoelasticity as compared to that in coupled thermoelasticity. It is
noticed from Fig. 3b that the attenuation coefficient (Q3) of thermodiffusive (TD) wave increases slowly in the
frequency range 0oop0:03 in case of coupled ðt0 ¼ 0:0Þ and generalized ðt0 ¼ 0:05; 0:1Þ theories of
thermoelasticity. While this quantity decreases in case of generalized thermoelasticity ðt0 ¼ 0:05; 0:1Þ in the
frequency range of 0:3pop10 and sharply increases for all oX10, but it increases in a linear manner for
oX0:3 in coupled thermoelasticity ðt0 ¼ 0:0Þ. From Figs. 2b and 3b, it is observed that the attenuation
coefficients of MD and TD waves start increasing from non-zero values at o ¼ 0:0001 in contrast to the
attenuation coefficient of ED—wave which remains zero even up to o ¼ 0:001 and observes sharp increase
afterwards. This agrees with the analytic results, although the development of attenuations (Q1,Q2,Q3) is
quite small in magnitude.

The Figs. 1c, 2c and 3c represent variation profiles of specific loss of energy in case of elastodiffusive (ED),
mass diffusion (MD) and thermodiffusive (TD) waves on log-linear scales with frequency respectively. The
trends of variation of ED-waves are similar to that of attenuation in the range of 0oop0:1 except having
quite high magnitude as observed from Fig. 1c. It remains stable and approximately linear in coupled
thermoelasticity ðt0 ¼ 0:0Þ, but drops to zero value after being dispersive in case of generalized
thermoelasticity ðt0 ¼ 0:05; 0:1Þ for oX0:1. The variation profiles of specific loss of MD-waves are more or
less similar to those of attenuation (Q2) except it has quite high magnitude and also have finite values at high
Fig. 3. (a) Variation of phase velocity of mass diffusion (MD) waves w.r.t. frequency for different relaxation times. (b) Variation of

attenuation coefficient of mass diffusion (MD) waves w.r.t. frequency for different relaxation times. (c) Variation of specific loss factor of

mass diffusion (MD) waves w.r.t. frequency for different relaxation times.
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frequencies in case of generalized thermoelasticity ðt0 ¼ 0:05; 0:1Þ. It is noticed from Fig. 3c, that specific loss
profiles of TD-wave is just the mirror image of its attenuation profiles in the low-frequency range 0oop0:03
and follows almost similar trends for oX0:03 except having quite large magnitude and also becomes steady
and stable in case of generalized thermoelasticity ðt0 ¼ 0:05; 0:1Þ. It is noticed that, the specific loss of energy is
quite high in the frequency regimes in which phase velocity has small magnitude, which signifies the effect of
internal friction of the material.

From the comparison of Figs. 1a, b, 2a, b and 3a, b, it is observed that the effect of thermal relaxation time
is quite significant at high-frequency regions which established the fact that ‘‘second sound’’ effects are short
lived. The modifications of various considered quantities at low-frequency regions are mainly due to mass
concentration effects and at high frequency it is due to both mass and thermal diffusion processes. Therefore,
the fact that at low-frequencies ðo51Þ mechanical energy transfer is more effective than thermal conduction
as well as mass concentration and conditions locally are isentropic. However, at the opposite extreme ðob1Þ,
thermal energy transfer and mass diffusion are more predominant processes and prevailing conditions are
nearly isothermal and diffusive.

8. Conclusions

This work deals with the propagation of plane harmonic generalized thermoelastic diffusive waves in heat
conducting solids. The secular equation infers that there are three longitudinal waves namely, a
elastodiffusive(ED-mode), a mass diffusion (MD-mode) and a thermodiffusive (TD-mode), in addition to
two transverse waves which can propagate in such solids. The transverse waves get decoupled from rest of the
motion and hence do not interact with thermal and mass diffusion fields. These waves travel without
attenuation and dispersion while other are significantly influenced by the interacting fields and hence are
subjected to both attenuation and dispersion. At low frequency, the disturbance is dominated by mechanical
process of transportation of energy while at high frequency it is significantly dominated by a close diffusive
process (heat conduction and mass diffusion). The complex secular equation is solved both analytically and
numerically by using irreducible case of Cardano’s method with the help of DeMoiver’s theorem in order to
obtain phase velocities, attenuation coefficients, and specific loss of energy dissipation of ED, MD, and TD
waves. It is noticed from the numerically computer simulated results that the effect of thermal relaxation time
is quite significant at high frequency regions and establishing the fact that ‘second sound’ effects are short
lived. The modifications of various considered quantities at low frequency are mainly due to mass
concentration and at high frequency; it happens due to both mass concentration and thermal diffusion fields.
Again this also strengthens the fact that mechanical energy transfer is more dominant at low frequency
conditions in contrast to mass diffusion and thermal energy transfer at high frequency. Moreover, this is well
exhibited and established from the various graphical representation of considered functions that, the
magnitude of attenuation coefficient of all the possible modes of wave propagation is quite small as compared
to respective phase velocities and specific loss factors for the considered material parameters. This shows that
the interaction of mass concentration and thermal fields with displacement field enhances the signal
propagation to distant positions as compared to that in its absence.
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